• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
  • Terms & Conditions
Flyy Tech
  • Home
  • Apple
  • Applications
    • Computers
    • Laptop
    • Microsoft
  • Security
  • Smartphone
  • Gaming
  • Entertainment
    • Literature
    • Cooking
    • Fitness
    • lifestyle
    • Music
    • Nature
    • Podcasts
    • Travel
    • Vlogs
  • Camera
  • Audio
No Result
View All Result
  • Home
  • Apple
  • Applications
    • Computers
    • Laptop
    • Microsoft
  • Security
  • Smartphone
  • Gaming
  • Entertainment
    • Literature
    • Cooking
    • Fitness
    • lifestyle
    • Music
    • Nature
    • Podcasts
    • Travel
    • Vlogs
  • Camera
  • Audio
No Result
View All Result
Flyy Tech
No Result
View All Result

Computer-aided food engineering | Nature Food

flyytech by flyytech
November 3, 2022
Home Review
Share on FacebookShare on Twitter


  • Erdogdu, F., Sarghini, F. & Marra, F. Mathematical modeling for virtualization in food processing. Food Eng. Rev. 9, 295–313 (2017).

    Article 

    Google Scholar
     

  • Phanden, R. K., Sharma, P. & Dubey, A. A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater. Today Proc. 38, 174–178 (2021).

    Article 

    Google Scholar
     

  • Hyvärinen, M., Jabeen, R. & Kärki, T. The modelling of extrusion processes for polymers—a review. Polymers 12, 1306 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Datta, A. K. Computer-Aided Food Manufacturing (Cornell Univ., 2021); https://blogs.cornell.edu/digital-food-manufacturing/industry-examples/

  • Venkataraman, H., Westerhof, K. & Olson, S. The Digital Transformation of the Food Industry (Lux Research, 2019); https://web.luxresearchinc.com/hubfs/Press%20Release%20Assets/Lux%20Research%20-%20The%20Digital%20Transformation%20of%20the%20Food%20Industry.pdf

  • Scott, G. & Richardson, P. The application of computational fluid dynamics in the food industry. Trends Food Sci. Technol. 8, 119–124 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Dhanasekharan, K. M., Grald, E. W. & Mathur, R. How flow modeling benefits the food industry. Food Technol. 58, 32–35 (2004).


    Google Scholar
     

  • Farid, M. M. Mathematical Modeling of Food Processing (CRC Press, 2010).

  • Sun, D.-W. Computational Fluid Dynamics in Food Processing (CRC Press, 2019).

  • Datta, A. K. Toward computer-aided food engineering: mechanistic frameworks for evolution of product, quality and safety during processing. J. Food Eng. 176, 9–27 (2016).

    Article 

    Google Scholar
     

  • Ball, C. O. Mathematical solution of problems on thermal processing of canned food. Univ. California Publications Pub. Health. 1, 15–245 (1928).


    Google Scholar
     

  • Teixeira, A. A., Dixon, J. R., Zahradnik, J. W. & Zinsmeister, G. E. Computer optimization of nutrient retention in the thermal processing of conduction-heated foods. Food Technol. 23, 137–142 (1969).


    Google Scholar
     

  • Datta, A. K. & Teixeira, A. A. Numerical modeling of natural-convection heating in canned liquid foods. Trans. ASAE 30, 1542–1551 (1987).

    Article 

    Google Scholar
     

  • Tsukada, T., Sakai, N. & Hayakawa, K.-I. Computerized model for strain-stress analysis of food undergoing simultaneous heat and mass transfer. J. Food Sci. 56, 1438–1445 (1991).

    Article 

    Google Scholar
     

  • Khankari, K. K., Morey, R. V. & Patankar, S. V. Mathematical-model for moisture diffusion in stored grain due to temperature-gradients. Trans. ASAE 37, 1591–1604 (1994).

    Article 

    Google Scholar
     

  • Shi, X., Datta, A. K. & Mukherjee, Y. Thermal stresses from large volumetric expansion during freezing of biomaterials. J. Biomech. Eng. 120, 720–726 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H., Datta, A., Taub, I. & Doona, C. Electromagnetics, heat transfer, and thermokinetics in microwave sterilization. AlChE J. 47, 1957–1968(2001).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z., Marra, F., Subbiah, J. & Wang, S. Computer simulation for improving radio frequency (RF) heating uniformity of food products: a review. Crit. Rev. Food Sci. Nutr. 58, 1033–1057 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rakesh, V. & Datta, A. Transport in deformable hygroscopic porous media during microwave puffing. AlChE J. 59, 33–45 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ho, Q. T. et al. A three-dimensional multiscale model for gas exchange in fruit. Plant Physiol. 155, 1158–1168 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denys, S., VanLoey, A. M., Hendricks, M. E. & Tobback, P. P. Modeling heat transfer during high-pressure freezing and thawing. Biotechnol. Progr. 13, 416–423 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Buckow, R., Schroeder, S., Berres, P., Baumann, P. & Knoerzer, K. Simulation and evaluation of pilot-scale pulsed electric field (PEF) processing. J. Food Eng. 101, 67–77 (2010).

    Article 

    Google Scholar
     

  • Datta, A. K. & Halder, A. Status of food process modeling and where do we go from here (Synthesis of the outcome from brainstorming. Compr. Rev. Food Sci. Food Safety 7, 117–120 (2008).

  • Jousse, F., Jongen, T., Agterof, W., Russell, S. & Braat, P. Simplified kinetic scheme of flavor formation by the Maillard reaction. J. Food Sci. 67, 2534–2542 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Ho, Q. T. et al. Multiscale modeling in food engineering. J. Food Eng. 114, 279–291 (2013).

    Article 

    Google Scholar
     

  • Nicolaï, B. M. & Baerdemaeker, J. D. A variance propagation algorithm for the computation of heat conduction under stochastic conditions. Int. J. Heat Mass Transf. 42, 1513–1520 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Farid, M. A unified approach to the heat and mass transfer in melting, solidification, frying and different drying processes. Chem. Eng. Sci. 56, 5419–5427 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Takhar, P. S. Unsaturated fluid transport in swelling poroviscoelastic biopolymers. Chem. Eng. Sci. 109, 98–110 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Schrefler, B. A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55, 351–388 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Gulati, T. & Datta, A. K. Mechanistic understanding of case-hardening and texture development during drying of food materials. J. Food Eng. 166, 119–138 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Weerts, A. H., Lian, G. & Martin, D. Modeling rehydration of porous biomaterials: anisotropy effects. J. Food Sci. 68, 937–942 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Nicolas, V. et al. Modelling heat and mass transfer in deformable porous media: application to bread baking. J. Food Eng. 130, 23–35 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yamsaengsung, R. & Moreira, R. G. Modeling the transport phenomena and structural changes during deep fat frying—part1: model development. J. Food Eng. 53, 1–10 (2002).

    Article 

    Google Scholar
     

  • Dhall, A. & Datta, A. K. Transport in deformable food materials: a poromechanics approach. Chem. Eng. Sci. 66, 6482–6497 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ni, H., Datta, A. & Torrance, K. Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model. Int. J. Heat Mass Transf. 42, 1501–1512 (1999).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Warning, A. D., Arquiza, J. M. R. & Datta, A. K. A multiphase porous medium transport model with distributed sublimation front to simulate vacuum freeze drying. Food Bioprod. Process. 94, 637–648 (2015).

    Article 

    Google Scholar
     

  • Civille, G. V. & Carr, B. T. Sensory Evaluation Techniques (CRC Press, 2015).

  • Thussu, S. & Datta, A. Texture prediction during deep frying: a mechanistic approach. J. Food Eng. 108, 111–121 (2012).

    Article 

    Google Scholar
     

  • van Boekel, M. A. J. S. Kinetic modeling of food quality: a critical review. Compr. Rev. Food Sci. Food Safety. 7, 144–158 (2008).

    Article 

    Google Scholar
     

  • Ranjbaran, M., Carciofi, B. A. M. & Datta, A. K. Engineering modeling frameworks for microbial food safety at various scales. Compr. Rev. Food Sci. Food Safety. 20, 4213–4249 (2021).

    Article 

    Google Scholar
     

  • Nguyen, P.-M., Goujon, A., Sauvegrain, P. & Vitrac, O. A computer-aided methodology to design safe food packaging and related systems. AlChE J. 59, 1183–1212 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G., Huang, K., Miao, M., Feng, B. & Campanella, O. H. Molecular dynamics simulation for mechanism elucidation of food processing and safety: state of the art. Compr. Rev. Food Sci. Food Safety. 18, 243–263 (2019).

    Article 

    Google Scholar
     

  • Nguyen, P.-M., Guiga, W., Dkhissi, A. & Vitrac, O. Off-lattice Flory–Huggins approximations for the tailored calculation of activity coefficients of organic solutes in random and block copolymers. Ind. Eng. Chem. Res. 56, 774–787 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y., Welle, F. & Vitrac, O. A blob model to parameterize polymer hole free volumes and solute diffusion. Soft Matter 15, 8912–8932 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. The new direction of computational fluid dynamics and its application in industry. J. Phys. Conf. Ser. 1064, 012060 (2018).

    Article 

    Google Scholar
     

  • Vitrac, O. & Hayert, M. Modeling in food across the scales: towards a universal mass transfer simulator of small molecules in food. SN Appl. Sci. 2, 1509 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Touffet, M., Allouche, M. H., Ariane, M. & Vitrac, O. Coupling between oxidation kinetics and anisothermal oil flow during deep-fat frying. Phys. Fluids 33, 085105 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sinnott, M. D., Harrison, S. M. & Cleary, P. W. A particle-based modelling approach to food processing operations. Food Bioprod. Process. 127, 14–57 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gruyters, W. et al. Modelling cooling of packaged fruit using 3D shape models. Food Bioprocess Technol. 11, 2008–2020 (2018).

    Article 

    Google Scholar
     

  • Luo, J., Wu, M., Gopukumar, D. & Zhao, Y. Big data application in biomedical research and health care: a literature review. Biomed. Inform. Insights 8, BII.S31559 (2016).

    Article 

    Google Scholar
     

  • Fisher, O. J. et al. Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems. Comput. Chem. Eng. https://doi.org/10.1016/j.compchemeng.2020.106881 (2020).

  • Aghbashlo, M., Hosseinpour, S. & Mujumdar, A. S. Application of artificial neural networks (ANNs) in drying technology: a comprehensive review. Drying Technol. 33, 1397–1462 (2015).

    Article 

    Google Scholar
     

  • Bhagya Raj, G. V. S. & Dash, K. K. Comprehensive study on applications of artificial neural network in food process modeling. Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2020.1858398 (2020).

  • Zhang, D., Del Rio-Chanona, E. A., Petsagkourakis, P. & Wagner, J. Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization. Biotechnol. Bioeng. 116, 2919–2930 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Islam, M. R., Sablani, S. S. & Mujumdar, A. S. An artificial neural network model for prediction of drying rates. Drying Technol. 21, 1867–1884 (2003).

    Article 

    Google Scholar
     

  • Gulati, T. & Datta, A. K. Enabling computer-aided food process engineering: property estimation equations for transport phenomena-based models. J. Food Eng. 116, 483–504 (2013).

    Article 

    Google Scholar
     

  • Dadmohammadi, Y., Kantzas, A., Yu, X. & Datta, A. K. Estimating permeability and porosity of plant tissues: evolution from raw to the processed states of potato. J. Food Eng. 277, 109912 (2020).

    Article 

    Google Scholar
     

  • van der Sman, R. G. M. & Meinders, M. B. J. Prediction of the state diagram of starch water mixtures using the Flory–Huggins free volume theory. Soft Matter 7, 429–442 (2011).

    Article 
    ADS 

    Google Scholar
     

  • van der Sman, R. G. M. Thermodynamics of meat proteins. Food Hydrocoll. 27, 529–535 (2012).

    Article 

    Google Scholar
     

  • Nguyen, P.-M., Guiga, W. & Vitrac, O. Molecular thermodynamics for food science and engineering. Food Res. Int. 88, 91–104 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilgis, T. A. Soft matter food physics—the physics of food and cooking. Rep. Prog. Phys. 78, 124602 (2015).

  • Madoumier, M., Trystram, G., Sébastian, P. & Collignan, A. Towards a holistic approach for multi-objective optimization of food processes: a critical review. Trends Food Sci. Technol. 86, 1–15 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Banga, J. R., Balsa-Canto, E. & Alonso, A. A. Quality and safety models and optimization as part of computer-integrated manufacturing. Compr. Rev. Food Sci. Food Safety. 7, 168–174 (2008).

    Article 

    Google Scholar
     

  • Erdogdu, F. & Balaban, M. O. Complex method for nonlinear constraned multi-criteria (multi-objective function) optimization of thermal processing. J. Food Process. Eng. 26, 357–375 (2003).

    Article 

    Google Scholar
     

  • Arias-Mendez, A., Warning, A., Datta, A. K. & Balsa-Canto, E. Quality and safety driven optimal operation of deep-fat frying of potato chips. J. Food Eng. 119, 125–134 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sarghini, F. & De Vivo, A. Application of constrained optimization techniques in optimal shape design of a freezer to dosing line splitter for ice cream production. Food Eng. Rev. 13, 262–273 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Topcam, H. & Erdogdu, F. Designing system cavity geometry and optimizing process variables for continuous flow microwave processing. Food Bioprod. Process. 127, 295–308 (2021).

    Article 

    Google Scholar
     

  • Zhu, Y., Guillemat, B. & Vitrac, O. Rational design of packaging: toward safer and ecodesigned food packaging systems. Front. Chem. https://doi.org/10.3389/fchem.2019.00349 (2019).

  • Banga, J. R., Balsa-Canto, E., Moles, C. G. & Alonso, A. A. Improving food processing using modern optimization methods. Trends Food Sci. Technol. 14, 131–144 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Seifi, F., Azizi, M. J. & Akhavan Niaki, S. T. A data-driven robust optimization algorithm for black-box cases: an application to hyper-parameter optimization of machine learning algorithms. Comput. Ind. Eng. 160, 107581 (2021).

    Article 

    Google Scholar
     

  • Zhang, J., Datta, A. & Mukherjee, S. Transport processes and large deformation during baking of bread. AlChE J. 51, 2569–2580 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. & Datta, A. K. Microwave power absorption in single- and multiple-item foods. Food Bioprod. Process. 81, 257–265 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bimbenet, J.-J., Schubert, H. & Trystram, G. Advances in research in food process engineering as presented at ICEF 9. J. Food Eng. 78, 390–404 (2007).

    Article 

    Google Scholar
     

  • Altin, O., Marra, F. & Erdogdu, F. Computational study for natural convection effects on temperature during batch and continuous industrial scale radio frequency tempering/thawing processes. J. Food Eng. 312, 110743 (2022).

    Article 

    Google Scholar
     

  • Klíma, J. et al. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results. Ultrason. Sonochem. 14, 19–28 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Knoerzer, K., Buckow, R., Trujillo, F. J. & Juliano, P. Multiphysics simulation of innovative food processing technologies. Food Eng. Rev. 7, 64–81 (2015).

    Article 

    Google Scholar
     

  • Piovesan, A., Vancauwenberghe, V., Van De Looverbosch, T., Verboven, P. & Nicolaï, B. X-ray computed tomography for 3D plant imaging. Trends Plant Sci. 26, 1171–1185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesvadba, P. Database of Physical Properties of Food (Food Properties Awareness Club, 2021); www.nelfood.com

  • Kansou, K. et al. Food modelling strategies and approaches for knowledge transfer. Trends Food Sci. Technol. 120, 363–373 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Filter, M., Plaza-Rodríguez, C., Thoens, C., Kaesbohrer, A. & Appel, B. Towards community driven food safety model repositories. Procedia Food Sci. 7, 105–108 (2016).

    Article 

    Google Scholar
     

  • Datta, A. Food physics: a multi-level, modularized course. Canvas https://canvas.instructure.com/courses/4317396 (2021).

  • Wang, Z. et al. Visualizing 3D food microstructure using tomographic methods: advantages and disadvantages. Annu. Rev. Food Sci. Technol. 9, 323–343 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Merenda, M., Porcaro, C. & Iero, D. Edge machine learning for AI-enabled IoT devices: a review. Sensors 20, 2533 (2020).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Lassila, T., Manzoni, A., Quarteroni, A. & Rozza, G. in Reduced Order Methods for Modeling and Computational Reduction (eds Quarteroni, A. & Rozza, G.) 235–273 (Springer, 2014).

  • Ding, M., Han, X., Wang, S., Gast, T. F. & Teran, J. M. A thermomechanical material point method for baking and cooking. ACM Trans. Graph. 38, 192 (2019).

    Article 

    Google Scholar
     

  • Tao, F. & Qi, Q. Make more digital twins. Nature 573, 490–491 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Verboven, P., Defraeye, T., Datta, A. K. & Nicolai, B. Digital twins of food process operations: the next step for food process models? Curr. Opin. Food Sci. 35, 79–87 (2020).

    Article 

    Google Scholar
     

  • Koulouris, A., Misailidis, N. & Petrides, D. Applications of process and digital twin models for production simulation and scheduling in the manufacturing of food ingredients and products. Food Bioprod. Process. 126, 317–333 (2021).

    Article 

    Google Scholar
     

  • Prawiranto, K., Carmeliet, J. & Defraeye, T. Physics-based digital twin identifies trade-offs between drying time, fruit quality, and energy use for solar drying. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.606845 (2021).

  • Gerogiorgis, D. I. & Bakalis, S. Digitalisation of food and beverage manufacturing. Food Bioprod. Process. 128, 259–261 (2021).

    Article 

    Google Scholar
     

  • Vilas, C., Alonso, A. A., Balsa-Canto, E., López-Quiroga, E. & Trelea, I. C. Model-based real time operation of the freeze-drying process. Processes 8, 325 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Piovesan, A. et al. Designing mechanical properties of 3D printed cookies through computer aided engineering. Foods https://doi.org/10.3390/foods9121804 (2020).

  • Devezeaux De Lavergne, M., Young, A. K., Engmann, J. & Hartmann, C. Food oral processing—an industry perspective. Front. Nutr. https://doi.org/10.3389/fnut.2021.634410 (2021).

  • Nesheim, M., Oria, M. & Yih, P. Y. A Framework for Assessing Effects of the Food System (National Academies Press, 2015).

  • Perrot, N., Trelea, I. C., Baudrit, C., Trystram, G. & Bourgine, P. Modelling and analysis of complex food systems: state of the art and new trends. Trends Food Sci. Technol. 22, 304–314 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Clancy, K. Digging deeper: transdisciplinary and systems approaches to food security. J. Agric. Food Syst. Community Dev. 7, 13–16 (2017).


    Google Scholar
     

  • Roos, Y. H. et al. Food engineering at multiple scales: case studies, challenges and the future—a European perspective. Food Eng. Rev. 8, 91–115 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bhunnoo, R. The need for a food-systems approach to policy making. Lancet 393, 1097–1098 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Alber, M. et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. npj Digit. Med. 2, 115 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stachura, S. S., Malajczuk, C. J. & Mancera, R. L. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field. J. Mol. Model. 24, 174 (2018).

    Article 
    PubMed 

    Google Scholar
     



  • Source_link

    flyytech

    flyytech

    Next Post
    The Wait is Almost Over: AMD Announces New GPUs Today

    The Wait is Almost Over: AMD Announces New GPUs Today

    Leave a Reply Cancel reply

    Your email address will not be published. Required fields are marked *

    Recommended.

    Why Organisations Need Both EDR and NDR for Complete Network Protection

    Why Organisations Need Both EDR and NDR for Complete Network Protection

    October 2, 2022
    China-Based Lenovo Tops Russia’s PC Market

    China-Based Lenovo Tops Russia’s PC Market

    October 23, 2022

    Trending.

    Shop now. Pay later. on the App Store

    Shop now. Pay later. on the App Store

    February 25, 2023
    Volla Phone 22 review

    Volla Phone 22 review

    March 26, 2023
    USIU student team qualifies for Microsoft Imagine Cup World Championship

    USIU student team qualifies for Microsoft Imagine Cup World Championship

    April 5, 2023
    Light Lens Lab 50mm f/2 Review: The Classic Speed Panchro II Reborn

    Light Lens Lab 50mm f/2 Review: The Classic Speed Panchro II Reborn

    March 22, 2023
    Google 3D animals & AR objects: Full list & gallery

    Google 3D animals & AR objects: Full list & gallery

    December 27, 2022

    Flyy Tech

    Welcome to Flyy Tech The goal of Flyy Tech is to give you the absolute best news sources for any topic! Our topics are carefully curated and constantly updated as we know the web moves fast so we try to as well.

    Follow Us

    Categories

    • Apple
    • Applications
    • Audio
    • Camera
    • Computers
    • Cooking
    • Entertainment
    • Fitness
    • Gaming
    • Laptop
    • lifestyle
    • Literature
    • Microsoft
    • Music
    • Podcasts
    • Review
    • Security
    • Smartphone
    • Travel
    • Uncategorized
    • Vlogs

    Site Links

    • Home
    • About Us
    • Contact Us
    • Disclaimer
    • Privacy Policy
    • Terms & Conditions

    Recent News

    Webinar with Guest Forrester: Browser Security New Approaches

    Webinar with Guest Forrester: Browser Security New Approaches

    May 29, 2023
    ‘Honkai Star Rail’ Version 1.1 Update – Galactic Roaming Releases on June 7th for iOS, Android, and PC – TouchArcade

    ‘Honkai Star Rail’ Version 1.1 Update – Galactic Roaming Releases on June 7th for iOS, Android, and PC – TouchArcade

    May 29, 2023

    Copyright © 2022 Flyytech.com | All Rights Reserved.

    No Result
    View All Result
    • Home
    • Apple
    • Applications
      • Computers
      • Laptop
      • Microsoft
    • Security
    • Smartphone
    • Gaming
    • Entertainment
      • Literature
      • Cooking
      • Fitness
      • lifestyle
      • Music
      • Nature
      • Podcasts
      • Travel
      • Vlogs

    Copyright © 2022 Flyytech.com | All Rights Reserved.

    What Are Cookies
    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT